Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Acta Neurobiol Exp (Wars) ; 84(1): 51-58, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587324

RESUMO

Levetiracetam (LEV) is a drug commonly used as an anticonvulsant. However, recent evidence points to a possible role as an antioxidant. We previously demonstrated the antioxidant properties of LEV by significantly increasing catalase and superoxide dismutase activities and decreasing the hydrogen peroxide (H2O2) levels in the hippocampus of rats with temporal lobe epilepsy (TLE) showing scavenging properties against the hydroxyl radical. The aim of the present work was to evaluate, the effect of LEV on DNA oxidation, by determining 8­hydroxy­2­deoxyguanosine (8­OHdG) levels, and glutathione content, through reduced (GSH) and oxidized (GSSG) glutathione levels, in the hippocampus of rats with TLE. Male Wistar rats were assigned to the control (CTRL), CTRL+LEV, epileptic (EPI) and EPI+LEV groups. TLE was induced using the lithium­pilocarpine model. Thirteen weeks after TLE induction, LEV was administered for one week through osmotic pumps implanted subcutaneously. The determination of 8­OHdG, GSH and GSSG levels were measured using spectrophotometric methods. We showed that LEV alone significantly increased 8­OHdG and GSSG levels in the hippocampus of control rats compared to those in epileptic condition. No significant differences in GSH levels were observed. LEV could induce changes in the hippocampus increasing DNA oxidation and GSSG levels under nonepileptic condition but not protecting against the mitochondrial dysfunction observed in TLE probably by mechanisms related to changes in chromatin structure, neuroinflammation and alterations in redox components.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Piracetam , Masculino , Ratos , Animais , Levetiracetam/efeitos adversos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Piracetam/efeitos adversos , Antioxidantes/uso terapêutico , Dissulfeto de Glutationa/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Ratos Wistar , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Glutationa/metabolismo , Oxirredução
2.
Microorganisms ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257939

RESUMO

Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.

3.
Toxicon ; 237: 107528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013057

RESUMO

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Assuntos
Crotalinae , Viperidae , Animais , Camundongos , Viperidae/metabolismo , Espectrometria de Massas em Tandem , Fosfolipases A2/química , Venenos de Víboras/toxicidade , Edema/induzido quimicamente
4.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136155

RESUMO

Lead (Pb2+) exposure during early life induces cognitive impairment, which was recently associated with an increase in brain kynurenic acid (KYNA), an antagonist of NMDA and alpha-7 nicotinic receptors. It has been described that N-acetylcysteine (NAC) favors an antioxidant environment and inhibits kynurenine aminotransferase II activity (KAT II, the main enzyme of KYNA production), leading to brain KYNA levels decrease and cognitive improvement. This study aimed to investigate whether the NAC modulation of the brain KYNA levels in mice ameliorated Pb2+-induced cognitive impairment. The dams were divided into four groups: Control, Pb2+, NAC, and Pb2++NAC, which were given drinking water or 500 ppm lead acetate in the drinking water ad libitum, from 0 to 23 postnatal days (PNDs). The NAC and Pb2++NAC groups were simultaneously fed NAC (350 mg/day) in their chow from 0 to 23 PNDs. At PND 60, the effect of the treatment with Pb2+ and in combination with NAC on learning and memory performance was evaluated. Immediately after behavioral evaluation, brain tissues were collected to assess the redox environment; KYNA and glutamate levels; and KAT II activity. The NAC treatment prevented the long-term memory deficit exhibited in the Pb2+ group. As expected, Pb2+ group showed redox environment alterations, fluctuations in glutamate levels, and an increase in KYNA levels, which were partially avoided by NAC co-administration. These results confirmed that the excessive KYNA levels induced by Pb2+ were involved in the onset of cognitive impairment and could be successfully prevented by NAC treatment. NAC could be a tool for testing in scenarios in which KYNA levels are associated with the induction of cognitive impairment.

5.
Cells ; 12(21)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947615

RESUMO

Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Água Potável , Síndromes Neurotóxicas , Humanos , Arsênio/toxicidade , Intoxicação por Arsênico/complicações , Encéfalo , Cognição
6.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628871

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Genótipo , Mutação , Fenótipo
7.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511272

RESUMO

Giardiasis, which is caused by Giardia lamblia infection, is a relevant cause of morbidity and mortality worldwide. Because no vaccines are currently available to treat giardiasis, chemotherapeutic drugs are the main options for controlling infection. Evidence has shown that the nitro drug nitazoxanide (NTZ) is a commonly prescribed treatment for giardiasis; however, the mechanisms underlying NTZ's antigiardial activity are not well-understood. Herein, we identified the glucose-6-phosphate::6-phosphogluconate dehydrogenase (GlG6PD::6PGL) fused enzyme as a nitazoxanide target, as NTZ behaves as a GlG6PD::6PGL catalytic inhibitor. Furthermore, fluorescence assays suggest alterations in the stability of GlG6PD::6PGL protein, whereas the results indicate a loss of catalytic activity due to conformational and folding changes. Molecular docking and dynamic simulation studies suggest a model of NTZ binding on the active site of the G6PD domain and near the structural NADP+ binding site. The findings of this study provide a novel mechanistic basis and strategy for the antigiardial activity of the NTZ drug.


Assuntos
Giardia lamblia , Giardíase , Humanos , Giardíase/tratamento farmacológico , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/uso terapêutico
8.
Microorganisms ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36985142

RESUMO

Laccases are valuable enzymes as an excellent ecological alternative for bioremediation issues because they can oxidize persistent xenobiotic compounds. The production and characterization of extracellular laccases from saprotrophic fungi from disturbed environments have been scarcely explored, even though this could diversify their functional characteristics and expand the conditions in which they carry out their catalysis. Agrocybe pediades, isolated from a disturbed forest, produces an extracellular laccase in liquid culture. The enzyme was purified, identified and characterized. Copper and hexachlorobenzene do not function as inducers for the laccase produced. Partial amino acid sequences were obtained by LC-MS/MS that share similarity with laccases from other fungi. Purified laccase is a monomer with a molecular mass between 55-60 kDa and had an optimum activity at pH 5.0 and the optimum temperature at 45 °C using 2,6-dimethoxyphenol (2,6-DMP) as substrate. The Km and Vmax also determined with 2,6-DMP were 100 µM and 285 µmol∙min-1∙mg-1, respectively, showing that the laccase of A. pediades has a higher affinity for this substrate than that of other Agaricales. These features could provide a potential catalyst for different toxic substrates and in the future laccase could be used in environmental recovery processes.

9.
Biomedicines ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979827

RESUMO

Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant-antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.

10.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558035

RESUMO

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Assuntos
Antiprotozoários , Giardia lamblia , Parasitos , Trichomonas vaginalis , Animais , Humanos , Metronidazol/farmacologia , Antiparasitários/farmacologia , Benzimidazóis/farmacologia , Antiprotozoários/farmacologia
11.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497079

RESUMO

The activation of the maternal immune system by a prenatal infection is considered a risk factor for developing psychiatric disorders in the offspring. Toxoplasma gondii is one of the pathogenic infections associated with schizophrenia. Recent studies have shown an association between high levels of IgG anti-T. gondii from mothers and their neonates, with a higher risk of developing schizophrenia. The absence of the parasite and the levels of IgGs found in the early stages of life suggest a transplacental transfer of the anti-T. gondii IgG antibodies, which could bind fetal brain structures by molecular mimicry and induce alterations in neurodevelopment. This study aimed to determine the maternal pathogenic antibodies formation that led to behavioral impairment on the progeny of rats immunized with T. gondii. Female rats were immunized prior to gestation with T. gondii lysate (3 times/once per week). The anti-T. gondii IgG levels were determined in the serum of pregestational exposed females' previous mating. After this, locomotor activity, cognitive and social tests were performed. Cortical neurotransmitter levels for dopamine and glutamate were evaluated at 60 PND in the progeny of rats immunized before gestation (Pregestational group). The maternal pathogenic antibodies were evidenced by their binding to fetal brain mimotopes in the Pregestational group and the reactivity of the serum containing anti-T. gondii IgG was tested in control fetal brains (non-immunized). These results showed that the Pregestational group presented impairment in short and long-term memory, hypoactivity and alteration in social behavior, which was also associated with a decrease in cortical glutamate and dopamine levels. We also found the IgG antibodies bound to brain mimotopes in fetuses from females immunized with T. gondii, as well as observing a strong reactivity of the serum females immunized for fetal brain structures of fetuses from unimmunized mothers. Our results suggest that the exposure to T. gondii before gestation produced maternal pathogenic antibodies that can recognize fetal brain mimotopes and lead to neurochemical and behavioral alterations in the offspring.


Assuntos
Dopamina , Toxoplasma , Gravidez , Animais , Feminino , Ratos , Ácido Glutâmico , Imunoglobulina G , Encéfalo
12.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430836

RESUMO

Treatments to combat giardiasis have been reported to have several drawbacks, partly due to the drug resistance and toxicity of current antiparasitic agents. These constraints have prompted many researchers to investigate new drugs that act against protozoan parasites. Enzyme inhibition is an important means of regulating pathogen metabolism and has recently been identified as a significant alternative target in the search for new treatments. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase (G6PD::6PGL) is a bifunctional enzyme involved in the pentose phosphate pathway (PPP) in Giardia lamblia (G. lamblia). The G. lamblia enzyme is unusual since, unlike the human enzyme, it is a fused enzyme. Here, we show, through inhibition assays, that an in-house chemical library of 120 compounds and four target compounds, named CNZ-7, CNZ-8, CMC-1, and FLP-2, are potent inhibitors of the G. lamblia G6PD::6PGL fused enzyme. With a constant (k2) of 2.3, 3.2, and 2.8 M−1 s−1, respectively, they provoke alterations in the secondary and tertiary protein structure and global stability. As a novel approach, target compounds show antigiardial activity, with IC50 values of 8.7, 15.2, 15.3, and 24.1 µM in trophozoites from G. lamblia. Moreover, these compounds show selectivity against G. lamblia, since, through counter-screening in Caco-2 and HT29 human cells, they were found to have low toxicity. This finding positions these compounds as a potential and attractive starting point for new antigiardial drugs.


Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/tratamento farmacológico , Giardíase/parasitologia , Trofozoítos/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Células CACO-2
13.
Antioxidants (Basel) ; 11(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36290695

RESUMO

Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM: Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD: Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION: Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.

14.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231114

RESUMO

Transcription factor EB (TFEB) is considered the master transcriptional regulator of autophagy and lysosomal biogenesis, which regulates target gene expression through binding to CLEAR motifs. TFEB dysregulation has been linked to the development of numerous pathological conditions; however, several other lines of evidence show that TFEB might be a point of convergence of diverse signaling pathways and might therefore modulate other important biological processes such as cellular senescence, DNA repair, ER stress, carbohydrates, and lipid metabolism and WNT signaling-related processes. The regulation of TFEB occurs predominantly at the post-translational level, including phosphorylation, acetylation, SUMOylating, PARsylation, and glycosylation. It is noteworthy that TFEB activation is context-dependent; therefore, its regulation is subjected to coordinated mechanisms that respond not only to nutrient fluctuations but also to stress cell programs to ensure proper cell homeostasis and organismal health. In this review, we provide updated insights into novel post-translational modifications that regulate TFEB activity and give an overview of TFEB beyond its widely known role in autophagy and the lysosomal pathway, thus opening the possibility of considering TFEB as a potential therapeutic target.


Assuntos
Autofagia , Lisossomos , Autofagia/genética , Carboidratos , Regulação da Expressão Gênica , Lisossomos/metabolismo , Fosforilação
15.
Clin Biochem ; 109-110: 64-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089067

RESUMO

BACKGROUND: Newborn screening for glucose-6-phosphate dehydrogenase deficiency (G6PDd) was implemented in Mexico beginning in 2017. In a Mexican population, genotyping analysis of G6PD as a second-tier method identified a previously unreported missense variant, p.(Ser184Cys), which we propose to call "Toluca", and the extremely rare p.(Gln195His) or "Tainan" variant, which was previously described in the Taiwanese population as a Class II allele through in silico evaluations. Here, we sought to perform in vitro biochemical characterizations of the Toluca and Tainan G6PD natural variants and describe their associated phenotypes. METHODS: The "Toluca" and "Tainan" variants were identified in three unrelated G6PDd newborn males, two of whom lacked evidence of acute hemolytic anemia (AHA) or neonatal hyperbilirubinemia (NHB). We constructed wild-type (WT), Tainan, and Toluca G6PD recombinant enzymes and performed in vitro assessments. RESULTS: Both variants had diminished G6PD expression, decreased affinities for glucose-6-phosphate and NADP+ substrates, significant decreases in catalytic efficiency (∼97 % with respect to WT-G6PD), and diminished thermostabilities that were partially rescued by NADP+. In silico protein modeling predicted that the variants would have destabilizing effects on the protein tertiary structure, potentially reducing the enzyme half-lives and/or catalytic efficiencies. CONCLUSION: Our data suggest that G6PD "Tainan" and "Toluca" are potential Class II natural variants, which agrees with the absence of chronic nonspherocytic hemolytic anemia (CNSHA) in our patients. It remains to be determined whether these variants represent high-risk genetic factors for developing CNSHA, AHA, and/or NHB.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Humanos , Masculino , Recém-Nascido , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Triagem Neonatal , NADP , México
16.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889079

RESUMO

Helicobacter pylori (H. pylori) has been proposed as the foremost risk factor for the development of gastric cancer. We found that H. pylori express the enzyme glucose-6-phosphate dehydrogenase (HpG6PD), which participates in glucose metabolism via the pentose phosphate pathway. Thus, we hypothesized that if the biochemical and physicochemical characteristics of HpG6PD contrast with the host G6PD (human G6PD, HsG6PD), HpG6PD becomes a potential target for novel drugs against H. pylori. In this work, we characterized the biochemical properties of the HpG6PD from the H.pylori strain 29CaP and expressed the active recombinant protein, to analyze its steady-state kinetics, thermostability, and biophysical aspects. In addition, we analyzed the HpG6PD in silico structural properties to compare them with those of the HsG6PD. The optimal pH for enzyme activity was 7.5, with a T1/2 of 46.6 °C, at an optimum stability temperature of 37 °C. The apparent Km values calculated for G6P and NADP+ were 75.0 and 12.8 µM, respectively. G6P does not protect HpG6PD from trypsin digestion, but NADP+ does protect the enzyme from trypsin and guanidine hydrochloride (Gdn-HCl). The biochemical characterization of HpG6PD contributes to knowledge regarding H. pylori metabolism and opens up the possibility of using this enzyme as a potential target for specific and efficient treatment against this pathogen; structural alignment indicates that the three-dimensional (3D) homodimer model of the G6PD protein from H. pylori is different from the 3D G6PD of Homo sapiens.

17.
Curr Top Med Chem ; 22(16): 1307-1325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578850

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a public health problem that has caused approximately 4.5 million deaths since December 2019. Concerning the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. Concerning G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. Concerning the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARSCoV- 2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID- 19 and its possible role in the generation of oxidative stress and glucose metabolism deficits, and inflammation present in this respiratory disease and its progression including neurological manifestations.


Assuntos
COVID-19 , Glucosefosfato Desidrogenase , COVID-19/metabolismo , COVID-19/patologia , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Hemólise , Humanos , Estresse Oxidativo , SARS-CoV-2
18.
Cancers (Basel) ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565420

RESUMO

A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.

19.
Curr Top Med Chem ; 22(16): 1346-1368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35366776

RESUMO

Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment. However, various drugs have been proposed, including those that attenuate the intense inflammatory response, and recently, the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D), and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis, and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, and regulation of calcium homeostasis between other mechanisms. It has been shown that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions, and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review, the evidence of the possible role of vitamin D, and its metabolites, as a protector against the neurological manifestations of COVID-19 was summarized.


Assuntos
Tratamento Farmacológico da COVID-19 , Vitamina D , Calcifediol/uso terapêutico , Colecalciferol , Humanos , Neuroproteção , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas/farmacologia , Vitaminas/uso terapêutico
20.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455472

RESUMO

Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...